AI Agent for Spreadsheets: Automate Excel & Google Sheets with AI
You spend hours cleaning data, writing formulas, and building reports. An AI agent does all three — and catches errors you'd miss. Here's how to build one that turns your spreadsheets into an autopilot system.
What's Inside
Why Spreadsheets Need AI Agents
Spreadsheets are the world's most popular programming language. Over 1 billion people use Excel or Google Sheets. But most of them are doing the same painful tasks over and over:
- Data cleaning — fixing formats, removing duplicates, standardizing names. Takes 60% of data work time.
- Formula writing — Googling "VLOOKUP nested IF XLOOKUP" for the 100th time.
- Report building — copy-paste data from 5 sources, create pivot tables, format charts. Every. Single. Week.
- Error checking — finding the one cell with a typo that breaks the whole model.
An AI agent handles all of this. You describe what you want in plain English, and the agent reads your data, writes formulas, cleans values, builds charts, and catches errors — all through the Google Sheets or Excel API.
Finance teams report saving 8-12 hours per week after deploying spreadsheet agents. The biggest wins: automated weekly reports (3 hours → 5 minutes), data cleaning (2 hours → 2 minutes), and formula debugging (cut support tickets by 70%).
6 Things a Spreadsheet Agent Can Do
Data Cleaning & Normalization
"Clean up the company names column — standardize capitalization, remove extra spaces, fix common misspellings, and flag potential duplicates." The agent processes 10,000 rows in seconds, doing what would take hours manually.
Formula Generation from English
"Calculate the rolling 7-day average of column C, but only for rows where column A is 'Active' and column B is after January 1st." The agent writes the formula, explains it, and inserts it.
Automated Report Generation
Every Monday, the agent: pulls data from your CRM sheet, calculates KPIs, creates a summary table, generates charts, and formats everything as a ready-to-share report. Zero manual work.
Anomaly Detection
"Alert me if any expense is 3x higher than the category average, or if revenue drops more than 15% week-over-week." The agent monitors your data and flags outliers before they become problems.
Cross-Sheet Data Merging
Combine data from 5 different sheets or CSVs: match on company name (fuzzy matching), merge revenue data with customer info, deduplicate, and create a unified view. What used to require VLOOKUP nightmares takes one command.
Natural Language Queries
"What were our top 10 customers by revenue last quarter?" "Which products have declining sales for 3+ months?" Ask questions about your data in English, get answers with the supporting data highlighted.
Build: Data Cleaning Agent
import Anthropic from "@anthropic-ai/sdk";
import { google } from "googleapis";
const anthropic = new Anthropic();
const sheets = google.sheets({ version: "v4", auth: oAuth2Client });
async function cleanColumn(spreadsheetId, sheetName, column, rules) {
// Read the column data
const range = `${sheetName}!${column}:${column}`;
const { data } = await sheets.spreadsheets.values.get({
spreadsheetId, range,
});
const values = data.values?.flat() || [];
const header = values[0];
const rows = values.slice(1);
// Process in batches of 100
const batchSize = 100;
const cleaned = [];
for (let i = 0; i < rows.length; i += batchSize) {
const batch = rows.slice(i, i + batchSize);
const response = await anthropic.messages.create({
model: "claude-sonnet-4-20250514",
max_tokens: 2000,
messages: [{
role: "user",
content: `Clean this data column. Return a JSON array of cleaned values.
Column: "${header}"
Cleaning rules: ${rules}
Original values:
${JSON.stringify(batch)}
Rules:
- Preserve the original order
- Return exactly ${batch.length} values
- If a value can't be cleaned, return it unchanged
- Return ONLY the JSON array, nothing else
Common cleaning operations:
- Standardize capitalization (title case for names)
- Remove extra whitespace
- Fix obvious typos
- Standardize date formats to YYYY-MM-DD
- Normalize phone numbers
- Standardize country/state names
- Remove special characters where inappropriate`
}],
});
const cleanedBatch = JSON.parse(response.content[0].text);
cleaned.push(...cleanedBatch);
}
// Write cleaned values back
await sheets.spreadsheets.values.update({
spreadsheetId,
range: `${sheetName}!${column}2:${column}${rows.length + 1}`,
valueInputOption: "USER_ENTERED",
requestBody: {
values: cleaned.map(v => [v]),
},
});
// Report changes
const changes = rows.reduce((count, original, idx) =>
original !== cleaned[idx] ? count + 1 : count, 0);
return { total: rows.length, changed: changes, unchanged: rows.length - changes };
}
// Example usage
await cleanColumn(
"spreadsheet_id_here",
"Customers",
"B", // Company names column
"Standardize company names: title case, remove Inc/LLC/Ltd suffixes, fix common abbreviations"
);
Build: Formula Generator
async function generateFormula(spreadsheetId, sheetName, request) {
// Get sheet structure (headers + sample data)
const { data } = await sheets.spreadsheets.values.get({
spreadsheetId,
range: `${sheetName}!A1:Z5`, // Headers + 4 rows of sample data
});
const headers = data.values?.[0] || [];
const sampleData = data.values?.slice(1, 5) || [];
const response = await anthropic.messages.create({
model: "claude-sonnet-4-20250514",
max_tokens: 500,
messages: [{
role: "user",
content: `Generate a Google Sheets formula for this request.
Sheet structure:
Columns: ${headers.map((h, i) =>
`${String.fromCharCode(65 + i)}: ${h}`
).join(", ")}
Sample data (first 4 rows):
${sampleData.map((row, i) =>
row.map((cell, j) => `${headers[j]}: ${cell}`).join(" | ")
).join("\n")}
Request: "${request}"
Return JSON:
{
"formula": "=THE_FORMULA",
"explanation": "what it does in plain English",
"column": "which column to put it in (letter)",
"applies_to": "single_cell|entire_column",
"example_result": "what the result looks like"
}
Rules:
- Use Google Sheets syntax (not Excel)
- Prefer ARRAYFORMULA for column-wide formulas
- Use named ranges or column letters, not hardcoded ranges
- Handle edge cases (empty cells, #N/A, etc.)`
}],
});
const result = JSON.parse(response.content[0].text);
// Optionally insert the formula
if (result.applies_to === "entire_column") {
const col = result.column;
await sheets.spreadsheets.values.update({
spreadsheetId,
range: `${sheetName}!${col}1`,
valueInputOption: "USER_ENTERED",
requestBody: { values: [[result.formula]] },
});
}
return result;
}
// Example usage
await generateFormula(
"spreadsheet_id",
"Sales",
"Calculate the running total of column D, resetting at the start of each month based on the date in column A"
);
// → =ARRAYFORMULA(IF(MONTH(A2:A)=MONTH(A1:INDIRECT("A"&ROW(A2:A)-1)),
// SUMIFS(D$2:D,MONTH(A$2:A),MONTH(A2:A),ROW(A$2:A),"<="&ROW(A2:A)),D2:D))
When a formula returns an error, send the formula + the error + surrounding data to Claude: "This formula returns #REF! when column B is empty. Fix it and explain why." This saves more time than any other spreadsheet agent feature.
Build: Automated Report Builder
async function generateWeeklyReport(spreadsheetId, config) {
// Read source data
const { data } = await sheets.spreadsheets.values.get({
spreadsheetId,
range: config.dataRange, // e.g., "Sales!A:F"
});
const headers = data.values[0];
const rows = data.values.slice(1);
// Filter to this week
const weekStart = getWeekStart();
const thisWeekRows = rows.filter(row => {
const date = new Date(row[config.dateColumn]);
return date >= weekStart;
});
// Generate analysis with Claude
const response = await anthropic.messages.create({
model: "claude-sonnet-4-20250514",
max_tokens: 1500,
messages: [{
role: "user",
content: `Analyze this week's data and generate a report.
Headers: ${headers.join(", ")}
Data (${thisWeekRows.length} rows this week):
${thisWeekRows.slice(0, 50).map(r => r.join(" | ")).join("\n")}
${thisWeekRows.length > 50 ? `... and ${thisWeekRows.length - 50} more rows` : ""}
Generate:
1. Key metrics (total revenue, count, averages)
2. Top 5 performers (by ${config.metricColumn})
3. Week-over-week comparison
4. Notable trends or anomalies
5. 3 recommended actions
Format as a clean report with sections.`
}],
});
// Create a new sheet for the report
const reportSheetName = `Report ${new Date().toISOString().split("T")[0]}`;
await sheets.spreadsheets.batchUpdate({
spreadsheetId,
requestBody: {
requests: [{
addSheet: {
properties: { title: reportSheetName },
},
}],
},
});
// Parse the report into cells and write
const reportLines = response.content[0].text.split("\n");
await sheets.spreadsheets.values.update({
spreadsheetId,
range: `${reportSheetName}!A1`,
valueInputOption: "USER_ENTERED",
requestBody: {
values: reportLines.map(line => [line]),
},
});
return { sheet: reportSheetName, analysis: response.content[0].text };
}
Build: Anomaly Detection Agent
async function detectAnomalies(spreadsheetId, sheetName, config) {
const { data } = await sheets.spreadsheets.values.get({
spreadsheetId,
range: `${sheetName}!A:Z`,
});
const headers = data.values[0];
const rows = data.values.slice(1);
// Calculate basic statistics for numeric columns
const numericCols = headers.map((h, i) => ({
header: h,
index: i,
values: rows.map(r => parseFloat(r[i])).filter(v => !isNaN(v)),
})).filter(col => col.values.length > 0);
const stats = numericCols.map(col => {
const mean = col.values.reduce((a, b) => a + b, 0) / col.values.length;
const stdDev = Math.sqrt(
col.values.reduce((sum, v) => sum + (v - mean) ** 2, 0) / col.values.length
);
return { ...col, mean, stdDev };
});
// Find statistical outliers (> 3 standard deviations)
const outliers = [];
rows.forEach((row, rowIdx) => {
stats.forEach(col => {
const val = parseFloat(row[col.index]);
if (!isNaN(val) && Math.abs(val - col.mean) > 3 * col.stdDev) {
outliers.push({
row: rowIdx + 2,
column: col.header,
value: val,
expected_range: `${(col.mean - 2 * col.stdDev).toFixed(2)} – ${(col.mean + 2 * col.stdDev).toFixed(2)}`,
deviation: ((val - col.mean) / col.stdDev).toFixed(1) + " σ",
});
}
});
});
// Use Claude for contextual anomaly detection
const response = await anthropic.messages.create({
model: "claude-sonnet-4-20250514",
max_tokens: 1000,
messages: [{
role: "user",
content: `Analyze this data for anomalies beyond simple statistics.
Headers: ${headers.join(", ")}
Row count: ${rows.length}
Statistical outliers found: ${outliers.length}
Column statistics:
${stats.map(s =>
`${s.header}: mean=${s.mean.toFixed(2)}, stdDev=${s.stdDev.toFixed(2)}, min=${Math.min(...s.values)}, max=${Math.max(...s.values)}`
).join("\n")}
Sample data (first 20 rows):
${rows.slice(0, 20).map(r => r.join(" | ")).join("\n")}
Statistical outliers:
${outliers.map(o =>
`Row ${o.row}: ${o.column} = ${o.value} (expected ${o.expected_range}, ${o.deviation})`
).join("\n")}
Look for:
1. Values that are technically within range but contextually wrong
2. Missing patterns (gaps in dates, skipped IDs)
3. Inconsistencies between related columns
4. Sudden trend changes
5. Data entry errors (swapped columns, wrong units)
Return JSON array of anomalies with: row, column, issue, severity (critical/warning/info), suggestion`
}],
});
const contextualAnomalies = JSON.parse(response.content[0].text);
// Highlight anomalies in the sheet
for (const anomaly of [...outliers.slice(0, 20), ...contextualAnomalies.slice(0, 20)]) {
// Could use conditional formatting API here
console.log(`⚠️ Row ${anomaly.row}: ${anomaly.column || anomaly.issue}`);
}
return { statistical: outliers, contextual: contextualAnomalies };
}
Automate your spreadsheet workflows
The AI Employee Playbook includes ready-to-deploy spreadsheet agents with data cleaning, formula generation, and reporting — plus 12 other agent templates.
Get the Playbook — €29Tool Comparison: 7 Spreadsheet AI Tools
| Tool | Best For | Price | Custom Logic |
|---|---|---|---|
| Google Sheets AI (Gemini) | In-sheet formula help, summaries | $20/mo (Workspace) | ❌ None |
| Excel Copilot | Formula help, pivot tables, charts | $30/user/mo (M365) | ❌ Limited |
| SheetAI | AI formulas inside Google Sheets | Free / $7/mo | ⚠️ Some |
| Rows.com | AI-native spreadsheet platform | Free / $12/mo | ⚠️ Moderate |
| Airtable AI | Database-style with AI fields | $20/user/mo | ⚠️ Some |
| Julius AI | Data analysis from uploaded CSVs | Free / $20/mo | ⚠️ Moderate |
| Custom Agent (this guide) | Full control, multi-sheet workflows | ~$3-10/mo (API) | ✅ Full |
Our recommendation: Use Excel Copilot or Gemini in Sheets for quick formula help. Use Rows.com if you want an AI-native spreadsheet from scratch. Build custom when you need automated pipelines (data arrives → clean → analyze → report → email) or when you work across multiple spreadsheets.
Build Your Spreadsheet Agent in 30 Minutes
Set Up Google Sheets API
Go to Google Cloud Console. Enable the Google Sheets API. Create a service account (for automated access) or OAuth credentials (for user-scoped access). Share your target spreadsheet with the service account email.
Install Dependencies
npm install googleapis @anthropic-ai/sdk. Set GOOGLE_APPLICATION_CREDENTIALS to your service account key path. Set ANTHROPIC_API_KEY.
Build the Core Agent
Copy the data cleaning and formula generator code from above. Create a simple CLI: node agent.js clean "Customers" "B" "Standardize company names" or node agent.js formula "Sales" "Calculate YTD revenue by product".
Add Scheduling
Set up the weekly report generator on a cron schedule. Use node-cron or Google Cloud Scheduler. Add the anomaly detector to run daily. Send alerts via email or Slack when anomalies are found.
5 Mistakes That Corrupt Your Data
Overwriting data without backups
Before ANY write operation, duplicate the sheet or create a backup range. One bad cleaning pass can destroy months of data. Use the Sheets API to copy the sheet first: duplicateSheet request. Keep the last 3 backups.
Cleaning in-place on the source sheet
Never modify raw data. Create a "Cleaned" sheet that pulls from the original. If your cleaning logic has a bug, the source data is untouched. This is data engineering 101, but most people skip it with AI agents.
Trusting AI-generated formulas without testing
Claude can write impressive formulas, but complex ones sometimes have edge cases. Always test with known data: pick 3 rows, calculate the expected result manually, and verify the formula matches. Especially for financial calculations.
Sending all data to the API
A 100,000-row spreadsheet will blow up your API costs and context window. For cleaning: process in batches of 100-200 rows. For analysis: send summary statistics + a sample, not every row. For anomaly detection: pre-filter with basic statistics first.
No audit trail
When your agent changes 500 cells, you need to know what changed and why. Log every change: original value, new value, reason, timestamp. Create an "Agent Log" sheet that tracks all modifications. Without this, debugging is impossible.
Stop doing spreadsheet work manually
The AI Employee Playbook includes complete spreadsheet agent code with data cleaning, formula generation, reporting, and anomaly detection — plus 12 other agent templates.
Get the Playbook — €29What's Next
Start with the formula generator — it has the fastest time-to-value and the lowest risk (it adds formulas, doesn't modify data). Then build the data cleaning agent with proper backups. Finally, set up automated reports and anomaly detection on a schedule.
The best spreadsheet agents aren't the most sophisticated. They're the ones that save someone 2 hours every Monday morning by having the weekly report ready before they arrive. Build for that kind of impact.
Want the complete agent-building system?
The AI Employee Playbook covers the 3-file framework, memory systems, autonomy rules, and real production examples.
Get the Playbook — €29